Get Started
cvPal Documentation
Use cvPal's API through comprehensive documentation and guides.
A comprehensive toolkit for computer vision engineers to manage datasets, generate synthetic images, and streamline data preparation for training and evaluation. Our documentation is open-source and available on GitHub.
Features
- Synthetic Image Generation - Create custom datasets using text prompts
- Dataset Merging - Seamlessly combine datasets with multiple attributes
- Label Management - Effortlessly remove or replace specific labels from your dataset
- Dataset Reporting - Generate comprehensive reports on your dataset
- Pandas Integration - Group images and labels into DataFrames for advanced manipulation
Installation
You can either use our remote hosted URL or run the server locally. Get your API key from the dashboard.
Python Package
bash
Install cvPal
Install the cvPal Python package for local development and integration.
1pip install cvpal==1.0.2Install the cvPal Python package for local development and integration.
Example Usage
python
Basic Usage Example
Generate synthetic datasets and preprocess existing ones with cvPal.
1 2 3 4 5 6 7 8 91011from cvpal.generate import DetectionDatasetfrom cvpal.preprocessing import ImagesDetection # Generate synthetic datadetection_dataset = DetectionDataset(model="stable-diffusion")detection_dataset.generate("a cat looking at the camera", num_images=2, labels=["cat"], output_type="yolo", overwrite=False) # Preprocess existing datasetcp = ImagesDetection()cp.read_data("/content/Rock-Paper-Scissors-SXSW-14", data_type="txt")cp.report()Generate synthetic datasets and preprocess existing ones with cvPal.
Quick Start
Table of Contents
0 sections
Reading Progress
Documentation Stats
12
Total Pages
4
Sections